Index
A
- accuracy 5.3.1.1, 5.3.2
- active sampling 19.1.2
- ADP
- See: Automatic Data Preparation
- Aggregates
- performance 10.4.7
- Algorithm
- algorithms 3.2.2
- Apriori 3.2.2, 8.3, 10
- association 10.1
- Decision Tree 3.2.1, 11
- defined 3.2
- Expectation Maximization 3.2.2, 12
- Generalized Linear Models 3.2.1, 14
- k-Means 3.2.2, 7.3, 15
- Minimum Description Length 3.2.1, 16
- Naive Bayes 3.2.1, 17
- Non-Negative Matrix Factorization 3.2.2, 18
- O-Cluster 3.2.2, 7.3, 19
- One-Class Support Vector Machine 3.2.2, 21.5
- Principal Component Analysis 3.2.2, 20.1
- Singular Value Decomposition 3.2.2, 20
- supervised 3.2.1
- Support Vector Machines 3.2.1
- unsupervised 3.2.2
- Algorithms
- anomaly detection 3.1.2.1, 3.2.2, 5.3.2, 6, 7.1
- apply
- See: scoring
- Apriori 3.2.2, 8.3, 10
- artificial intelligence 3.1
- association rules 3.1.2.1, 3.2.2, 8, 10
- attribute importance 3.1.1.2, 3.2.1, 9, 16.1
- Minimum Description Length 9.4
- attributes 1.3.1, 3.1.2.1
- Automatic Data Preparation 1.2.2, 1.3.2, 1.3.3, 3.3.1
C
- case table 1.3.2
- categorical target 5
- centroid 7.1.1, 15.1.2
- classification 3.1.1.2, 3.2.1, 5
- class weights 5.3.2
- clustering 3.1.2.1, 3.2.2, 7
- coefficients
- computational learning 1.1.6
- confidence 1.1.2
- confidence bounds 3.2.1, 4.1.1.6, 14.2.3
- confusion matrix 1.3.3, 5.2.1, 5.3.1.1
- cost matrix 5.3.1, 11.2.2
- costs 1.3.3, 5.3.1
D
F
M
- machine learning 3.1
- market basket data 1.3.3
- market-basket data 8.2
- MDL 3.2.1
- See: Minimum Description Length
- Minimum Description Length 16
- mining functions 3.1, 3.1.1.2
- missing value treatment 3.3.1
- model details 1.3.4, 11.1.1
- multicollinearity 14.2.4
- multidimensional analysis 1.1.6, 2.7
- multivariate linear regression 4.1.1.2
O
P
- parallel execution 3.4.1, 10.1, 11.1.2, 16.1, 17.1.1
- Partitioned model 2.5
- PCA
- See: Principal Component Analysis
- PL/SQL API 2.6, 2.6.1
- PREDICTION_PROBABILITY function 2.7
- PREDICTION Function 2.6.2
- predictive analytics 2.6.4
- predictive models 3.1.1
- Principal Component Analysis 3.2.2, 20.1
- prior probabilities 5.3.2, 17.1
R
S
- scoring 3.1.2.1
- anomaly detection 3.1.2.1
- classification 3.1.1.2
- clustering 3.1.2.1
- defined 1.1.1
- dynamic 3.4.2
- Exadata 2.4
- knowledge deployment 1.3.4
- model details 1.3.4
- Non-Negative Matrix Factorization 18.1.2
- O-Cluster 19.1.4
- parallel execution 3.4.1
- real time 1.3.4
- regression 3.1.1.1
- supervised models 3.1.1.2
- unsupervised models 3.1.2.1
- singularity 14.2.4
- Singular Value Decomposition 20
- sparse data 3.3.1, 10.3
- SQL data mining functions 2.6, 2.6.2
- SQL statistical functions 2.7
- star schema 10.3.1
- statistical functions 2.7
- statistics 1.1.5
- stratified sampling 5.3.2, 6.1.1
- Sub-Gradient Descent 21.1.1
- supervised learning 3.1.1
- support 1.1.2
- Support Vector Machine 3.2.1, 21
- SVD
- See: Singular Value Decomposition
- SVM
- See: Support Vector Machine